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The retrieval of aerosol size distributions from extinction measurements is a problem which 

has been studied for more than two decades. In this paper a new method for attacking this 
problem is presented. The method produces a solution representable as a linear combination 

of a few log-normal functions. 

1. INTR~OLJCTI~N 

The purpose of this paper is to describe a simple method of finding an approx- 
imate, but physically realistic, solution to the equations 

(1.1) 
-cc. 

1 K(Ai, r)f(r) dr = bi, i = I, 2 ,..., M, 
-0 

where (1) the bi, i = 1, 2 ,..., M, are extinction measurements at M different 
wavelengths for radiation passing through an aerosol, (2) the functionfrepresents the 
(unknown) aerosol size distribution (f(r) = the number of particles per cubic 
centimeter in the radius range (r, r + dr)), and (3) 

where Qext(mel, Znr/A) is the extinction for a plane wave of wavelength A passing 
through a spherical, homogeneous particle of radius r and refractive index m,\. 

The method is based on the assumption that an aerosol size distribution can be 
described by a linear combination of a few log-normal functions. However, the 
restriction to log-normal functions is not crucial; other families of functions-for 
example gamma functions. or “rectangular” functions-can also be used. Nor does 
the method depend explicitly on the special analytic form of the kernel K@, r). It is 
therefore possible that the method can be used for other problems as well. 

There exist several inversion methods which have been used for retrieving the 
aerosol size distribution from extinction measurements. Wolfson et al. [ 15 1 have 
analysed and compared four of these, namely, the Chahine-method; the regularization 
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method by Phillips, Twomey, and Tikhonov; the method by Backus and Gilbert; and 
the non-linear regression method. One conclusion obtained by Wolfson ef al. was, 
roughly speaking, that all four methods have some disadvantages which cause 
difficulties when applied in practice. 

In two recent and very interesting papers, the first by Rizzi ef al. [lo], the second 
by King [4], the regularization method is analysed in great detail. Both papers 
demonstrate the sensitivity of this inversion method to the selection of the so-called 
Lagrange multiplier needed in the method. These papers therefore also confirm the 
assertion that it is not easy to use the regularization method for determining aerosol 
size distributions from extinction measurements. 

One of the main advantages of the new method we describe in this paper is that it 
works very well in practice. 

The plan of the paper is as follows. In Section 2 we give a brief description of the 
kernel K. In Section 3 we introduce some notations and in Section 4 we discuss 
positive solutions to (1.1). In Section 5 we introduce some classes of log-normal 
functions, and discuss the relationship between log-normal functions and aerosol size 
distributions. In Sections 6 and 7 we present the method, and in Section 8 we make 
some remarks about the method. In Section 9 we apply the method to three cases of 
real data that can be found in the literature, and in section 10 we do some sensitivity 
tests. In Section 11 we make a few comments regarding computer-times, and in the 
last section we summarize the main advantages of the method. 

2. A FEW WORDS ABOUTTHE KERNEL 

As we saw from (1.2) the kernel K(1, r) is the product of nr’ and the extinction 
coefficient Qext(ml, 2nr/A). The extinction coefficient was determined analytically by 
G. Mie in 1908. It can be expressed as an infinite sum 

Q.,,=2-‘~(Zn+ l)Re(a,+b,) 

where a,, and b, are linear fractions of Bessel-functions and where x is equal to 27rr/l. 
For the precise definitions of a,, and b, see, e.g., Twomey [ 12 p. 2061. 

In Fig. 1, we have depicted the function Qext(ml, .) when m, is equal to 1.33. The 
shape of the function Qext(mA, .) is similar for other values of m,. Since Qext(m.{, -) 
oscillates around the line y = 2, and since K(A, r) is the product of rrr* and 
Qexth v 2nr/A), the shape of K(;1, r) for varying r and fixed A is like a sequence of 
terraces along the curve y = 2nr2, r > 0. 
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FIG. I. The graph of the function Q&n,. . ) for m, = 1.33. 

3. PRELIMINARY NOTATIONS 

Let Y denote the set of functions for which the integral 

.a 

!  K(Ai, r)f(r) dr 
.o 

exists for i= 1, 2,..., M. (From now on, when the integration limits are omitted, it is 
implicit that they are 0 and co.) For each f in I(/ we set 

(3.1) (Kf)i = 1. K(Ji 3 r)f(r) dr 

and define 

(3.2) Kf = (W-), 3 Kfhv-3 W-h,)” 

where * denotes transposition. We shall call (Kf)i a theoretical observation at Ai 
induced byf, and we shall call Kf the theoretical observation vector induced by f: 

Next set 

b = (b,, bz,..., b,&* 

where the bls, i = 1, 2 ,..., M, are the measurements in (1.1). We call b the 
measurement vector. 
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For a vector x in RN (N> 2) we shall use either the notation xi or the notation (x)~ 
to denote the ith component of x. We let RN, denote those vectors in RN which have 
non-negative components, and we let P+ denote those functions in Y which are non- 
negative. 

By dist( a, .) we shall mean a distance-function on R”. Examples of distance- 
functions are 

(3.3) dist(x,y)=t (xi-yiI 

(3.4) dist(x,y) = ($ Ixi -yi12) “* 

dist(x,y)=: Ix,-yiI wi (3.5) 

(3-e) 
l/2 

dist(x,y) = 5 /xi -y,l* wi . 
I 

In (3.5) and (3.6) the wI)s are weights (which may depend on 4’). 
Note that for each f in P, Kf is a vector in R” and therefore dist(Kf, 6) is well- 

defined for any distance-function on R”. For the sake of convenience, we shall call 
dist(Kf, b) f’s error, in spite of the fact that dist(Kf, b) is not a measure of f’s 
deviation from the true solution. 

4. NON-NEGATIVE SOLUTIONS 

When attacking an integral equation of type (1. I), one is almost always faced with 
one fundamental difficulty, namely, that “for any given function there exist many 
other functions, usually infinitely many, and quite different from f, with the same 
theoretical observation vector (see (3.1) and (3.2)) as the one induced by J” This 
implies that even if the experimental situation is perfect and there are no errors, 
neither in measurements nor in the model, one cannot expect to retrieve the true 
solution-or a solution close to the true solution-from Eq. (1.1) alone; and when 
there are measurement and/or modelling errors things become even worse. In order to 
overcome this ambiguity it is necessary to impose one or more additional conditions. 
(The reader can, for example, consult Twomey [ 131 or Rust and Burrus [ 111 for 
further infor.mation about integral equations of type (1. 1 ).) 

In many problems one knows that the true solution must be non-negative. This, for 
example, is the case in our problem. In such situations it is natural to start by 
restricting the set of feasible solutions to the set of positive functions. When one 
makes this restriction, due to errors in measurements as well as in the model, it often 
happens that one cannot find any function which satisfies (1.1) exactly. Therefore one 
is lead to look at the following minimization-problem: 
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(4-l) 

(4.2) 

Find a function / in Y + such that 

dist(& 6) ,< dist(Kf, b) 

for every function f in ;“I+. 

Unfortunately, this is not a tractable problem since in general there does not exist a 
solution to the problem. This mathematical nuisance can be resolved by enlarging the 
set of positive functions to the set of positive measures. However, this would be of 
little help, since one does not know of any method for finding the minimum. A more 
practical procedure is to approximate the set of positive functions from “inside” in 
the following way. 

Let I denote an arbitrary but fixed finite partition 0 < r,, < r, < ... < r., < 00 of the 
r-axis and define P+(I) as those non-negative (left-continuous) functions which are 
constant on each interval (rip,, ri], i = 1, 2 ,..., N, and which are zero otherwise. Now 
consider the following minimization-problem: 

(4.3) Find a function f  in .?+(I) such that the inequality (4.2) holds for all f in 
P+(I). 

Contrary to problem (4.1) this problem is quite easy to solve, at least if the distance 
function is given by any of the formulas (3.3) to (3.6). Since the new method we shall 
describe in Sections 6 and 7 has parts in common with the solution-procedure to 
problem (4.3) we shall now describe how problem (4.3) is solved. 

Set 

dyj =f (rj), j = 1, 2 . . . . . N, 

x = (x, ) x, )...) XM)* 

aij = jFj_, K(Ai, r) dr, 1 <i<M, 1 <j<N, 

and let A = (aij) be the M x N matrix which has aij as its elements. For a function f 
in P+(Z) it now follows that 

J'K(A,, r)f(r) dr = 6 f(rj)(/' 
,fr, -'j-l 

K(A,, r)dr) 

= f xjaij = (Ax), 
j=l 

which implies that 

(4.4) Kf= Ax 

when f  belongs to P+(I). Now, suppose we have solved the following minimization 
problem: 
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(4.5) Find a vector 2 in RN, such that 

dist(A?, b) < dist(Ax, b) 

jclr all vectors x in RN,. 

From (4.4) it then immediately follows that a solution to problem (4.3) is obtained 
by defining 

(4.6) 
T(r) = ij if rip, < r<rj, j = 1, 2 ,..., N, 

=o otherwise. 

Thus to solve problem (4.3) it suffices to solve problem (4.5). But this is quite easy to 
do if the distance-function is defined by any of the formulas (3.3) to (3.6). For, if 
dist( ., .) is defined by (3.3) or (3.5), problem (4.5) can easily be transformed into a 
standard LP-problem (LP = linear programming), and if dist( a, e) is defined by (3.4) 
or (3.6) it can be transformed into a QP-problem (QP = quadratic programming). 
Since there exist good algorithms for solving LP-problems as well as QP-problems, 
we conclude that if dist( ., .) is defined by any of the formulas (3.3) to (3.6) we can 
solve problem (4.5), and hence also problem (4.3). 

The question now arises whether the solution (4.6) is close to the true solution. If 
the partition is very line and the number of division-points is much larger than the 
number of measurements then the solution (4.6) is in general not close to the true 
solution. For, in this case the solution vector 2 to problem (4.5) will have many of its 
components equal to zero, and this will imply that the solution (4.6) will be 
physically unrealistic. (2 can never have more non-zero components than there are 
measurements.) In order to obtain a solution which is acceptable as a first approx- 
imation to the true solution, it is usually necessary to let the number of division- 
points in the partition be substantially smaller than the number of measurements. The 
disadvantage however, with a coarse partition is that the solution obtained will not 
satisfy Eq. (1.1) very well. One can usually find “better-looking” solutions with a 
smaller error. However, since problem (4.3) is easy to solve, it is convenient to use 
solutions to problem (4.3) for comparison with solutions obtained by other methods. 

5. ON LOG-NORMAL FUNCTIONS AND AEROSOL SIZE DISTRIBUTIONS 

A log-normal function is defined by 

f(r) = (-)-I r-’ (loga))‘exp (-f(10gCog’)2) 

for r > 0 and by f(r) = 0 otherwise. A log-normal function is thus defined by two 
positive parameters p and a; ,u is called the geometric mean; o is called the geometric 
deviation. We shall also call ,u the localization parameter and a the dispersion 
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parameter. We shall call the vector (,u, CT) the parameter-vector (determining the log- 
normal function). A log-normal function with parameter-vector (,u, a) will be denoted 
LNCu, 0.). 

We shall next introduce some sets of functions. We let .F denote the set of all log- 
normal functions. For every set P in the first quadrant for which the second 
component is larger than one, we let Z’(P) denote the set of all log-normal function 
with parameter-vector in P. For N= 1, 2,..., we let .& denote the set of functions 
which consists of all positive linear combinations of (at most) N log-normal functions 
and for every parameter-set P we let &(P) denote the set of all positive linear 
combinations of (at most) N log-normal functions with parameter vectors in P. 

According to K. Whitby [ 141 there is now a considerable body of evidence to 
suggest that most atmospheric aerosol size distributions are basically trimodal. The 
three modes are called the nuclei mode, the accumulation mode, and the coarse 
paticle mode. By using (1) the fact that aerosol size distributions are basically 
trimodal, (2) the central limit theorem, and (3) the fact that if a stochastic variable X 
has a log-normal distribution the same is true for any power of X, Whitby concludes 
[ 14, pp. 138-i43j that aerosol size distributions are best described as a positive 
linear combination of three log-normal functions, that is, a function in .<,. Similar 
arguments and conclusions can be found in Patterson and Gillette 191. 

Let us now introduce the following minimization-problem which we shall call the 
.yJP)-problem : 

(5.1) Find a function $ in .&(P) such that 

dist(Kj; b) < dist(Kf, 6) 

for all f in TV(P). 

What we would like to do is to solve this problem with a small value on N and with a 
parameter-set P chosen in such a way that the solution can be used as a description 
of an aerosol size distribution. Before we show how one can achieve this, we shall 
first show how the .7,(P)-problem can be solved, when the parameter-set P consists 
of e<xacrfqT N parameter-vectors. 

6. ON THE,F~(P)-PROBLEM WHEN P CONSISTS OF EXACTLY N ELEMENTS 

Let P be a parameter-set with exactly N elements. Then the set R(P) consists of 
exactly N log-normal functions which we shall denote hi, j = 1, 2,..., N. We call (h,}f 
the set of base-functions (associated with the parameter-set P). 

Next, let us determine the vector Kf for an arbitrary f in RN(P). Since A?(P) 
consists of exactly N functions, an arbitrary function in TN(P) can-in this case-be 
written 

(6.1) 
.\ 

f = c ujhj 
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where a = (a,, a, ,..., a,,,)* belongs to RN,. Therefore the ith component of the vector 
Kf satisfies 

(Kf)i = 1 K(Ai, r)f(r) dr = j K(Ai, r) (t ajhj(r)) dr 
I 

= $J aj ( K(k[, r) hi(r) dr = $ ajd, = (Da)i 
1 

where 

(6.3) d, = J’ K(&, r) h,(r) dr 

and D = (d,) is the A4 x N matrix with d, as its elements. We call D the base-matrix 
associated with the parameter-set. 

From (6.2) it follows that iff satisfies (6.1) then 

Kf=Da 

where D is the base-matrix associated with the parameter-set P. Hence, if P consists 
of exactly N parameter-vectors then the XN(P)-problem is equivalent to the following 
minimization problem: 

(6.4) Find a vector oi such that 

dist(D8, b) < dist(Da, b), Va E Ray. 

Once problem (6.4) is solved the solution to problem (5.1) is given by 

Now, looking at problem (6.4) we note that it has exuctlq the same structure as 
problem (4.5). Hence, if the distance-function in problem (6.4) is defined by (3.3) or 
(3.5), problem (6.4) can be transformed into an LP-problem, whereas if the distance- 
function is defined by (3.4) or (3.6), it can be transformed into a QP-problem. Since 
there exist efficient algorithms for solving LP-problems and QP-problems, we 
conclude that if the parameter-set P consists of exactly N elements then it is easy to 
solve the TN(P)-problem. In the next section we shall see how this fact can be utilized 
in order to obtain approximate solutions to problem (5.1) (the .Fv(P)-problem) for 
small values of N. 
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7. THE METHOD 

Our aim is now to describe a simple procedure of finding an approximate solution 
to the .FJP)-problem when N is small and the parameter-set P satisfies the following 
condition: 

(7.1) Every parameter-vector p = (a, o) in P has a dispersion coeflcient a such that 
o > uO where uO is not too small (preferably al.5 ,um). 

The motive for condition (7.1) is that it is a guarantee that the solution is physically 
realistic. 

The procedure consists of two phases. 

PHASE I. Step 1. Specify the parameter-set P. 

Step 2. Determine a net p in P; i.e., determine a finite subset of P such that each 
element in P is close to some element in P. 

Step 3. Determine the base-functions (h,}‘: associated with the net p. (N = the 
number of elements in p.) 

Step 4. Determine the base-matrix D defined by (6.3). (A quadrature formula 
is needed in order to determine the elements of D.) 

Step 5. Specify the distance-function dist( ., .). 

Step 6. Solve problem (6.4). 

Step 7. Set 

where & = (C;,, a2 ,..., c?~)* is the solution to problem (6.4). 

This ends Phase I. What we have done so far is find a function f in F,(P) which 
solves the ,&,(P)-problem. Moreover, if the net p is not too badly chosen, the 
function f will also give an approximate solution to the .F,(P)-problem. Note also 
that we have not imposed any restriction on the number of elements in the net p. 

Before we describe Phase II we shall introduce some further concepts. Two 
components Bi and Gj of the solution vector B are called close, if the corresponding 
parameter-vectors bi, ui) and (uj, uj) are close. A component bi of C? is called active 
if it is non-zero. The vector di is called singular if merely a small portion of the 
components are active. An active component is called isolated if there is no other 
active component close to it. Two active components are said to belong to the same 
cluster if they are close. Every cluster is called a mode. Every isolated component is 
also called a mode. 

We shall now state the fact that makes the method work so well. 

EXPERIMENTAL FACT. In all cases with real data so far encountered, the vector 6 
has been singular as soon as the number of elements in the net P has been chosen 
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larger than 12. Moreover if the lower bound for the dispersion coeflcients in the net 
? is not chosen unrealistically small (>lS), then the vector li has had at most three 
modes. 

We shall now present the second phase of the procedure. 

PHASE II. Step 1. Check whether the vector & has at most three modes. If not, 
go back to Phase I and start over with a larger value on the lower bound uO. 

Step 2. Check whether all non-negative components of 6 are isolated. If this is 
the case stop the procedure and takef as the solution to the problem. 

Step 3. (At this point we know that CE has at most three modes and that at 
least one mode is a cluster.) Determine a new parameter-set p with the same number 
of elements as tE has modes. Each parameter-vector in this new parameter-set shall be 
a weighted average of parameter-vectors corresponding to components belonging to 
the same mode. 

Step 4. Determine the base-functions (5)‘:’ associated with the parameter-set 
p. Here N’ denotes the number of parameter-vectors in p (which is equal to the 
number of modes of 0;). 

Step 5. Determine the base-matrix 0’ associated with p. (See (6.3).) 

Step 6. Find a vector a’= (a-,, 6, ,..., a-,,)* which solves problem (4.4) with D 
replaced by 0’. 

Step 7. Set 

The procedure is completed! 

8. SOMEREMARKS 

In this section we shall make some remarks about the method. Further comments 
will be made in the next section where we present some examples. 

Remark 8.1. The basic idea in the procedure is taken from the paper [ 1 ] by 
Gustafson. In this paper the author describes a method of fitting a sum of 
exponentials to measured data. 

Remark 8.2. At step 4 of Phase I one has to specify the distance-function 
dist( ., e). As has been pointed out there are several possibilities. However, it seems 
that distance-functions depending on the absolute values of the errors are better than 
those that depend on the squares of the errors. (That is, distance-functions defined by 
(3.3) or (3.5) are better than distance-functions defined by (3.4) or (3.6)) There are 
two reasons for this. The first reason is that distance-functions depending on absolute 
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values lead to LP-problems, whereas distance-functions depending on squares lead to 
QP-problems; and LP-problems are almost always easier to solve than QP-problems. 
The second reason is that distance-functions depending on the absolute values of the 
errors are more robust in the sence that they are less sensitive to systematic errors. 
For more information concerning the difference between distance-functions depending 
on absolute values and distance-functions depending on squares see, for example, the 
paper [7] by Narula and Wellington and papers quoted therein. 

Remark 8.3. One difficulty in the procedure is finding the average in step 3 of 
Phase II. The simplest case to handle is the one where all components belonging to 
the same mode are associated with base-functions with the same value on the 
dispersion-parameter. In this case we can do as follows. Let i,,k, i2,k,..., i,., denote 
the indices of the components belonging to the kth mode. (Usually the number of 
components belonging to a mode is less than or equal to 2.) Let ,D::‘. ,D{!‘,..., ,BU,~ 
denote the localization parameters for the base-functions with indices iiak, 
j= 1, 2 )..., m and let ufk’ denote the common value for the dispersion-parameter in , 
the kth mode. Now define ,CCk) by 

and define P’ by 

p’= { ($0, #d ) : k = 1, 2,..., N’ ) 

where N’ is the number of modes of 6. 

Remark 8.4. The solutionrobtained after Phase II usually gives a slightly larger 
error than the solution obtained after Phase I. The advantage withrcompared toPis 
that it is determined by a smaller number of parameters and hence has a simpler 
analytic form. If one is primarily interested in drawing a graph representing the 
aerosol size distribution one can use fjust as well as 3 

Remark 8.5. In step 2 of Phase I one has to determine a net 1; within P. As a 
general rule one should take a fairly coarse net. The calculations become much 
quicker and one loses surprisingly little in accuracy. 

Remark 8.6. As has been pointed out, it is not always very easy to determine the 
parameter set p in Phase II. In order to facilitate the path from the parameter set P to 
the parameter set P’ one can insert an intermediate phase. In this phase one introduces 
a new parameter set P* built up by (1) the active parameter-vectors in P, i.e., those 
parameter-vectors in p which correspond to active components of 8; and (2) some 
new parameter-vectors in the neighbourhood of these. One then uses P* to determine 
a new set of base-functions and a new base-matrix after which one solves problem 
(6.4) with this new base-matrix. Since all the active parameters of @ also belong to 
P*, the solution obtained in this intermediate step will of course have an error which 
is smaller than or equal to the error of the solution obtained after Phase I. 
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Remark 8.7. In principle the procedure works just as well whatever 
parametrizable family of non-negative functions one uses for base-functions; hence 
instead of having log-normal functions as base-functions, one could use, e.g., 
“rectangular” functions or gamma-functions. However, for the real data so far 
encountered, it seems that log-normal functions give the best fit with the least number 
of functions. 

Remark 8.8. Instead of looking for a function describing the number distribution 
one might be interested in finding functions which describe the surface area 
distribution or the mass distribution of an aerosol. Now, if one already has a function 
f(r) describing the number distribution, it is easy to find functions describing the 
surface area distribution and the mass distribution. However, these functions will in 
general not be linear combinations of log-normal functions even if f(r) is. If one 
wants to express the surface area distribution and the mass distribution as a linear 
combination of log-normal functions one can use the method described in Section 7 
with the kernel K divided by m-* and 4d/3, respectively. 

9. SOME EXAMPLES WITH REAL DATA 

In this section we shall illustrate our method by applying it to three cases of real 
data all of which can be found in the literature. 

Our first example is taken from a paper by King et al. [5], in which the authors 
present measurements taken on different occasions. We shall use the data collected 
November 20, 1975. By estimating the coordinates of the black dots on the left-hand 
side of Fig. 6 in their paper, we obtain the input data given in Table I. 

The first step in Phase I of the procedure is to determine a parameter-set. The most 
important part of this step is to determine a lower bound u0 for the dispersion 
parameter. In this first example we shall take a fairly large value on this parameter, 
namely, (J,, = 2.0pm. We also have to determine lower and upper bounds for the 

TABLE I 

Measurements Obtained by King et al. [ 5 I, November 20, 1975 

L-Value 

0.44 0.52 0.61 0.69 0.71 0.79 0.87 1.07 

Measurement 0.064 0.044 0.048 0.046 0.045 0.046 0.045 0.048 
Refractive 

index 1.45 - O.Oi 
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localization parameter. In this example we let these values be equal to 0.003 and 
1.2pm. We now define the set P by 

P = ((jf, a): 0.003 G/l ,< 1.2, u = 2.0}. 

Note that we have only allowed one value for the dispersion parameter cr. The reason 
for this will be given later. 

The next step in the procedure is to determine a net p within P. Before we do this 
we shall introduce a notation. For any two positive real numbers a and b, 
0 ( a ( b ( 00, any natural number n, and any real number s, the set defined by 

((pjro):pi=a(b/a)““, i= 0, l,..., n,o=s} 

will be denoted 

G{[a,b],N=n,o=s). 

Observe that ,uO = a, pu, = b and that the pi’s form a geometric series. Therefore 
1k37P ,,...,p,) determines a partition of the interval [a, b] with n + 1 division-points 
equi-distributed along a logarithmic scale. 

By using this notation, we now define the set p by 

(9.1) P = G( (0.003, 1.21, N = 32, u = 2.0). 

The ratio between two consecutive p-values in p will in this case be equal to 

(1.2/0.003) “j* = (400)“” z 1.206. 

The third step in the procedure is simply writing down the set of base-functions 
associated with the parameter-set p. In the fourth step we determine the base-matrix 
D. In order to do this, we have to specify the refractive index for the different 
wavelengths, since they are needed when specifying the kernel K(A, r). Following 
King et al. [5] we choose m, = 1.45 for all eight A-values. The dimension of the 
matrix D will this time be equal to 8 x 33, since the number of observations is equal 
to 8 and the number of base-functions is equal to 33. 

In the fifth step we shall determine a distance-function. In this example, as well as 
in all subsequent ones, we shall use the mean of the absolute values of the relative 
d@erences defined by 

(9.2) dist(x, y) = M- ’ ($, 1-1) 

as our distance-function. (This is a special case of (3.5).) The advantage of this 
choice of distance-function is that it can be used as a measure of the relative error 
between the theoretical observation vector and the measurement vector. For this 
reason we shall call dist(Kf; b) the relative error when dist(. , a) is defined by (9.2). 
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In the sixth step we shall solve problem (6.4). Since we have defined the distance- 
function by (9.2), problem (6.4) can easily be transformed into an LP-problem. 
(Compare, e.g., Murty [6, p. 151.) This LP-problem is then solved by using the 
IMSL-routine ZX3LP. (We shall always use this routine when solving an LP- 
problem.) In this case it turns out that only two out of 33 components are different 
from zero, namely, the 6 th and the 29 th. The values for these two components are: 

(9.3) Bs = 1,170,000, Gz9 = 6.29. 

In the last step of Phase I we form the sum 

3= 5 &LN@,,a,) 
i=O 

which in this case reduces to 

(9.4) 3= 1,170,OOO . LN(0.0077,2.0) + 6.29 . LN(0.567,2.0) 

since pu, = 0.0077, ,u,, = 0.567, u = 2.0, and ia and & satisfy (9.3). 
This completes Phase I. Now since the vector B has only two active components 

and both these are isolated, we do not make any further calculations but take (9.4) as 
our solution. 

Before we write down the relative error and the theoretical observation vector 
induced by the function (9.4) we shall present a solution corresponding to a smaller 
value for the dispersion parameter. Thus, let 

P = G{ [0.003,1.2], N= 32, u = 1.5) 

be the net in step 2 of the procedure. By using the same distance-function as before 
we now obtain a solution 

(9.5) f’= 84,600 - LN(0.028,1.5) + 1.55 . LN(0.390,1.5) 

+ 5.07 - LN(0.844,1.5). 

In this case the solution vector ci obtained at step 6 of Phase I had three modes, one 
of which was a cluster. We therefore had to carry out all the steps in Phase II. In 
particular, at step 3 of Phase II we had to choose a formula when determining the 
parameter-set p. The formula we used here, and will use for all other examples in this 
paper, is formula (8.1). 

In Fig. 2, we have depicted the graphs of functions (9.4) and (9.5). There is a 
substantial difference between the two graphs for small values of r, but this is not 
contradictory, since the effect on the extinction at wavelengths larger than 0.44pm is 
very small for particles less than 0.02,~m. 

In Table II, we have presented the theoretical observations and the relative errors 
for functions (9.4) and (9.5). In the first row we have repeated the measurements 
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FIG. 2. Calculated aerosol size distributions for the data presented in Table 1. The solid curve 
corresponds to a dispersion-coefficient equal to 2.0; the dashed curve corresponds to a dispersion- 
coefficient equal to 1.5. 

given in Table I. As could be expected the relative error is smaller for the function 
with the dispersion-coeffkient = 1.5. 

Before we continue with our next example, we shall compare the solutions obtained 

TABLE II 

Theoretical Observations and Relative Errors for the Solutions (9.4) and (9.5) 

Measurement 

Theoretical 
observation 

0 = 2.0 

fJ= 1.5 

Relative 
0.064 0.044 0.048 0.046 0.045 0.046 0.045 0.048 error 

0.0618 0.0526 0.0480 0.0459 0.0456 0.0451 0.0450 0.0455 0.0393 

0.0640 0.0532 0.0480 0.0460 0.0450 0.0455 0.0459 0.0480 0.0321 
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above with some solutions obtained when solving problem (4.3) of Section 4. We 
shall consider three partitions, namely, 

I, = G( [O.l, 41, N= 100) 

I,=G{[O.l,4],N=4} 

I,=G([O.l,4],N=3). 

Here G { [a, b], N = n) denotes the partition 

ri = a(b/a)““, i = 0, l,..., n. 

We use the same distance-function as before, namely, (9.2). 
In Fig. 3, we have depicted the solutions corresponding to these three choices of 

partitions. In Table III we present the theoretical observations and the relative errors 
for these solutions. 

lo3 
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t 
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FIG. 3. Aerosol size distributions for the data in Table I obtained by solving problem (4.3). The 
solution corresponding to partition I, is represented by the solid line, the solution corresponding to 
partition I, is represented by the dashed lines, and the solution corresponding to partition I, is 
represented by the dotted lines. (Each dotted line shall be interpreted as a very thin rectangle.) 

581621'1 7 
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TABLE III 

Theoretical Observations and Relative Errors for the Solutions Depicted in Fig. 3” 

Measurement 

Relative 
0.064 0.044 0.048 0.046 0.045 0.046 0.045 0.048 error 

Theoretical 
observation 

(I,) 0.0640 0.0468 0.0480 0.0460 0.0458 0.0460 0.0450 0.0480 

(I,) 0.0540 0.05 12 0.0480 0.0468 0.0458 0.0460 0.0461 0.0455 

(I,) 0.0457 0.0457 0.0460 0.0460 0.0458 0.0450 0.0450 0.0480 

’ Row 2 corresponds to partition I,. row 3 to partition I,, and row 4 to partition I,. 

0.010 

0.052 

0.050 

Of all the five solutions we have obtained, the one with the smallest relative error is 
the one obtained when solving problem (4.3) with partition I,. However, as we can 
see from Fig. 3, this solution is physically completely unrealistic. If we compare the 
relative errors for the solutions obtained when solving problem (4.3) using partitions 
I, and I, with the solutions obtained when using our method, we observe that the 
relative errors for the latter are substantially smaller. Note, also that in order to avoid 
a solution with gaps of zero particles, we need to choose a very coarse partition when 
using the method described in Section 4. 

Our next example is taken from a paper by von Hoyningen-Huene (3 ]. By 
estimating the coordinates for 20 of the small circles in Fig. 2a of his paper, we 
obtain the input data given in Table IV. Now, by assuming a refractive index equal to 
1.50 for all wavelengths and choosing the parameter-set 

P=G(]0.01,2], N=33, CJ= 1.8) 

we obtain a solution 

where c, = 0.06375, JZ = 0.7406, u = 1.8, IS, = 3 1,485 and CZ = 44.116. The relative 
error is this time equal to 0.038. We omit a figure showing the graph of the solution 
as well as a table with the theoretical observations. We only mention the fact that the 
solution we obtain looks very similar to the solution obtained by 
von Hoyningen-Huene. (See Fig. 2b in [3 I.) 

Our third example is taken from the paper [2] by HigHrd et al. By estimating the 
components of the circles of the D-curve in Fig. 8 of their paper we obtain the input 
data given in Table V. The refractive indices for the different wavelengths are 
calculated by using a formula developed by B. Nilsson. This formula is based on 
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TABLE IV 

Measurements Obtained by von Hoyningen-Huene [ 3 1 

A-Value 

0.34 0.36 0.39 0.43 0.46 0.50 0.53 0.56 0.62 0.65 

Measurement 1.84 2.00 2.01 1.87 1.75 1.51 1.47 1.40 1.20 1.12 

Refractive 
index 1.50 - O.Oi 

L-Value 

0.68 0.71 0.75 0~80 0.88 0.93 0.97 1.02 1.08 1.11 

Measurement 

Refractive 
index 

1.04 1.02 0.99 0.93 0.80 0.75 0.78 0.66 0.67 0.69 

1.50 - O.Oi 

results presented in [8] ; its main meteorological variable is the relative humidity. For 
the data obtained by Higird et al. the formula yields the indices given in Table VI. 

If one compares the data in this example with the data from the two previous 
examples the main difference is that in this example the measurements are taken from 
a much broader spectrum of wavelengths. 

By choosing the net p in the second step of the procedure equal to 

G( [O.Ol,lO], N= 33, c = 2.0) 

and using the same distance-function as before, we obtain a solution 

P-6) f= 255,000 . LN(0.024, 2.0) + 376 - LN(0.26, 2.0) 

+ 1.93 . LN(4.22,2.0). 

TABLE V 

Measurements Obtained by Hagard et al. 12 1 

i-Values 

0.55 0.58 0.70 0.80 0.90 1.06 1.7 2.2 3.8 4.7 10.8 

Measurement 
Relative 

humidity 

1.5 1.4 1.35 1.25 I.2 1.2 1.0 0.85 0.75 0.80 0.75 

70% 
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TABLE VI 

Refractive Indices for Different Wavelengths Determined by a Formula du to B. Nilsson” 

L-Value 

0.55 0.58 0.70 0.80 0.90 I .06 1.70 

Refractive 
index I .44 I .44 I .44 1.44 1.43 I .43 1.39 

I-Value 

2.2 3.8 4.7 10.7 

Refractive 
index 1.33 1.38 1.37 1.45.O.li 

10 

1 

PIA 1 
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10-2 I I 1) 

10-l 1 IO 10* 

A 

FIG. 4. Extinction-curve for the aerosol size distribution given by (9.6). The triangles represent the 
measurements given in Table V. 
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The relative error is this time equal to 0.0213, which is somewhat better than the 
relative errors for the two previous examples. 

In Fig. 4, we have depicted the function g(J) defined by 

g(A) = ,f W, r)~(r) dr 

where S(r) is the function defined by (9.6). In this figure the triangles represent the 
measurements given in Table V. 

10. ERROR AND SENSITIVITY ANALYSIS 

In all examples presented in the previous section we have chosen a net P of the 
following form: 

This means that we have not let the dispersion parameter u vary, but only the 
localization parameter ,u. The reason for this is simply that experiments have shown 
that the method always picks a solution with dispersion coefficients as small as 
possible. 

What value one shall choose for the dispersion parameter depends on one’s 
purpose and on how much information one has about the aerosol. A value equal to 
2.0 seems to be a reasonable initial choice in most cases, although one obtains a 
better fit the smaller the value one chooses. But the increase in fitness is often very 
small. For example, if we compare the theoretical observations induced by the 
function (9.4) (corresponding to a dispersion coefficient equal to 2.0) with the 
theoretical observations induced by the function (9.5) (corresponding to a dispersion 
coefficient equal to 1.5) we find that the distance between these two theoretical obser- 
vations is equal to 0.017 when the distance is calculated by formula (9.2). This 
means that the mean value of the absolute values of the relative differences between 
the components of the two theoretical observation vectors is less than 2%. 

Remark 10.1. One way of obtaining solutions, which do not necessarily only use 
functions with dispersion-coefficients equal to the smallest one allowed, is to 
introduce an extra term 

into the object function of the minimization problem. First choosing E very small and 
then choosing the y’s in such a way that yi becomes larger the smaller the 
corresponding dispersion coefficient is, one can obtain good solutions with dispersion 
coefficients larger than the smallest one allowed. 

In order to illustrate the sensitivity of the solution due to the measurements, we 
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shall give two examples showing what can happen when one measurement is omitted. 
Let us first omit the first measurement in the data obtained by King et al. presented 
in the previous section. Our A-values will then be equal to 0.52, 0.61. 0.69. 0.71, 0.78. 
0.87, 1.07 and our measurements will be equal to 0.044, 0.048, 0.046, 0.045. 0.046, 
0.045, 0.048. If we take 

P=G([O.1,2.0], N=20, a=2.0}, 

again take m, = 1.45 - O.Oi, and define the distance-function by (9.2), we obtain as 
our solution 

(10.1) f’= 4.0 LN(0.582, 2.0) + 0.39 LN(1.71, 2.0). 

In this case the relative error becomes equal to 0.0183, which is less than half the 
value 0.0393 which we obtained when the first measurement was not omitted. 

The difference between the function (9.4) and the function (10.1) can be observed 
from Fig. 5, in which both functions are depicted. 

106 
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1 O-2 10-l 1 10 102 

r$um) 

Fig. 5. Calculated aerosol size distributions for the data presented in Table I. The dashed curve 
corresponds to a solution obtained when all measurements are taken into account, the solid curve to a 
solution obtained when the first measurement is omitted. Both curves have dispersion-coefficients equal 
to 2.0. 
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If instead of omitting the first measurement we had omitted any other measurement 
there would have been very little change in the solution. Nor would there have been 
any substantial change in the relative error. Since the relative error did decrease 
substantially when the first measurement was left out, there is a possibility that the 
first measurement is less precise than the others. 

Let us also see what happens if we omit the lust measurement in the data obtained 
by Higird ef al. presented in the previous section. Since this measurement is taken at 
wavelength I = 10.7 whereas the previous one is taken at wavelength 1 = 4.7, it is not 
very surprising if the solution depends on this measurement. 

The result is as follows. If we take 

ij = G( [O-01, 10.01, N= 33, cr = 2.0}, 

use the same refractive indices as before and the same distance-function, we obtain a 
solution 

(10.2) f= 256,000 . LN(0.024, 2.0) + 362 - LN(0.27,2.0) 

+ 1.86 - LN(4.22, 2.0). 

If one draws a graph of the function (10.2) and compares it with a graph of 
function (9.6) one will notice that function (1.0.2) is located more to the left. 

Regarding the relative error, it is this time equal to 0.0234, which is even slightly 
larger than 0.0213, which was the relative error obtained when all measurements were 
taken into account. This means that there is no reason to believe that the last 
measurement is in any way less precise than the others. 

We shall end our illustration of the method by inverting a set of synthetic data. 
The data we shall use will essentially be the same as used by Wolfson et al. in [ 15 1. 

We first assume that the aerosol size distribution is given by 

f(r) = Cr6 exp(- 1.5r) 

where the constant C is such that the integral off is equal to one. We then calculate 

(_ W, W(r) dr 

for eight wavelengths, namely, II = 0.45, 1.19, 1.65, 2.25, 3.90, 6.05, 10.0, and 16.5 
using a refractive index equal to 1.33 - iO.0; we obtain the following 
“measurements” : 160, 166, 170, 176, 210, 250, 185, 86. 

We shall now apply our method to this set of data. By taking 

@= G( [0.8, 10.01, N= 20, u = 2.0), 
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choosing a refractive index m, = 1.33 - iO.0, defining the distance-function by (9.2), 
and using the IMSL-routine ZX3LP we obtain a solution 

where a’, = 2.516, p, = 1.92, and u = 2.0. The relative error becomes equal to 0.0784 
and the theoretical observations become equal to 157, 168, 176, 186, 199, 189, 144, 
86. Note the relatively large difference between the given measurements and the 
theoretical observations at wavelengths 6.05 and 10.0. 

If we choose a parameter-set p with smaller values on the dispersion-coefftcient we 
will get a better fit. For example, if we take 

e=G([2.0, lO.O],N=20, (T= 1.5) 

we obtain a solution 

f’= 6, LN@, , a) 

where t?, = 1.1277, p, = 3.98, and u = 1.5. The relative error is this time equal to 
0.018 (which must be considered as a small relative error) and the theoretical obser- 
vations are equal to 160, 166, 170, 177, 216, 236. 175, 86. 

11. COMPUTER TIMES 

The method described above has been implemented on a DEC-10 computer. The 
calculation times are of course dependent on how well we want to represent the 
functions involved in the procedure. Below, we shall give some examples of computer 
times when all the functions involved are represented by a vector with 100 
components. 

(1) Calculation of the set of base-functions. The CPU-time to calculate a set of N 
base-functions is approximately equal to I set when N = 20, and 4 set when N = 130. 

(2) Calculation of the kernel. The CPU-time to determine the kernel K(A, r) for 8 
A-values and 100 r-values is approximately 2.5 sec. 

(3) Calculation of the base-matrix. The CPU-time to determine a base-matrix of 
size A4 x N is approximately 3 set when M = 8 and N = 130, and approximately 
1 set when M= 8 and N= 20. 

(4) The minimization. The CPU-time to solve the minimization-problem (6.4) 
depends mainly on the size of the base-matrix D but also on the choice of distance- 
function and which algorithm is used. If we choose a distance-function of the form 
(3.1) or (3.3) we are led to an LP-problem. If we use the IMSL-routine ZX3LP then 
the CPU-time depends mainly on the number of rows in the base-matrix. For 
example, if M = 8 and N = 20 then the CPU-time is approximately equal to 0.35 set; 
if M = 8 and N = 100 the CPU-time is approximately 0.6 set; if M = 20 and N = 33 
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the CPU-time is approximately 2.0 set; and if M = 20 and N= 100 then the CPU- 
time is approximately equal to 3.5 sets. The IMSL-routine ZX4LP is even faster, 
particularly for larger problems. However, there is one important disadvantage with 
the ZX4LP-routine, namely, that it is less reliable then the ZX3LP-routine, which 
hardly ever fails. Especially when the base-matrix consists of columns which are 
almost identical, the ZX4LP-routine might not work. This situation occurs when we 
take a very fine net P at step 2 of Phase I in the procedure. 

12. CONCLUSIONS 

There are essentially three main advantages with the method described in this 
paper compared to most other methods. 

(i) The method does not require a good initial guess. 

(ii) The method is quite robust in the sense that there are seldom any 
numerical instabilities. 

(iii) The method is quite fast and therefore can be used for large series of data. 
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